Online Linear Optimization via Smoothing

نویسندگان

  • Jacob D. Abernethy
  • Chansoo Lee
  • Abhinav Sinha
  • Ambuj Tewari
چکیده

We present a new optimization-theoretic approach to analyzing Follow-the-Leader style algorithms, particularly in the setting where perturbations are used as a tool for regularization. We show that adding a strongly convex penalty function to the decision rule and adding stochastic perturbations to data correspond to deterministic and stochastic smoothing operations, respectively. We establish an equivalence between “Follow the Regularized Leader” and “Follow the Perturbed Leader” up to the smoothness properties. This intuition leads to a new generic analysis framework that recovers and improves the previous known regret bounds of the class of algorithms commonly known as Follow the Perturbed Leader.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L Control Theoretic Smoothing Splines

In this paper, we propose control theoretic smoothing splines with L optimality for reducing the number of parameters that describes the fitted curve as well as removing outlier data. A control theoretic spline is a smoothing spline that is generated as an output of a given linear dynamical system. Conventional design requires exactly the same number of base functions as given data, and the res...

متن کامل

Designing smoothing functions for improved worst-case competitive ratio in online optimization

Online optimization covers problems such as online resource allocation, online bipartite matching, adwords (a central problem in e-commerce and advertising), and adwords with separable concave returns. We analyze the worst case competitive ratio of two primal-dual algorithms for a class of online convex (conic) optimization problems that contains the previous examples as special cases defined o...

متن کامل

Worst Case Competitive Analysis of Online Algorithms for Conic Optimization

Online optimization covers problems such as online resource allocation, online bipartite matching, adwords (a central problem in e-commerce and advertising), and adwords with separable concave returns. We analyze the worst case competitive ratio of two primal-dual algorithms for a class of online convex (conic) optimization problems that contains the previous examples as special cases defined o...

متن کامل

Spectral Smoothing via Random Matrix Perturbations

We consider stochastic smoothing of spectral functions of matrices using perturbations commonly studied in random matrix theory. We show that a spectral function remains spectral when smoothed using a unitarily invariant perturbation distribution. We then derive state-of-the-art smoothing bounds for the maximum eigenvalue function using the Gaussian Orthogonal Ensemble (GOE). Smoothing the maxi...

متن کامل

Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing

We consider the linear programming relaxation of an energy minimization problem for Markov Random Fields. The dual objective of this problem can be treated as a concave and unconstrained, but non-smooth function. The idea of smoothing the objective prior to optimization was recently proposed in a series of papers. Some of them suggested the idea to decrease the amount of smoothing (so called te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014